Using Mistral API seems broken on cloudron
-
I get an odd error that says Mistral API is malformed but it works if I install open webui locally via docker.
May 29 11:14:06 ERROR:apps.openai.main:400 Client Error: Bad Request for url: https://api.mistral.ai/v1/chat/completions <30>1 2024-05-29T16:14:06Z iron 85872407-1b89-46c1-ae6f-868b66ed9a71 950 85872407-1b89-46c1-ae6f-868b66ed9a71 - Traceback (most recent call last): <30>1 2024-05-29T16:14:06Z iron 85872407-1b89-46c1-ae6f-868b66ed9a71 950 85872407-1b89-46c1-ae6f-868b66ed9a71 - File "/app/code/backend/apps/openai/main.py", line 361, in proxy <30>1 2024-05-29T16:14:06Z iron 85872407-1b89-46c1-ae6f-868b66ed9a71 950 85872407-1b89-46c1-ae6f-868b66ed9a71 - r.raise_for_status() <30>1 2024-05-29T16:14:06Z iron 85872407-1b89-46c1-ae6f-868b66ed9a71 950 85872407-1b89-46c1-ae6f-868b66ed9a71 - File "/usr/local/lib/python3.10/dist-packages/requests/models.py", line 1021, in raise_for_status <30>1 2024-05-29T16:14:06Z iron 85872407-1b89-46c1-ae6f-868b66ed9a71 950 85872407-1b89-46c1-ae6f-868b66ed9a71 - raise HTTPError(http_error_msg, response=self) May 29 11:14:06 requests.exceptions.HTTPError: 400 Client Error: Bad Request for url: https://api.mistral.ai/v1/chat/completions May 29 11:14:06 INFO: 75.19.98.88:0 - "POST /openai/api/chat/completions HTTP/1.1" 500 Internal Server Error
-
the more i look into this I think its on the Mistral API side. Looks like they are not supporting openAI' API structure.
-
@CptPlastic might be worth reporting upstream
-
@CptPlastic You might want to try via Open Router
Cause, it work well for me
-
This is the log after initiating a chat message:
INFO [apps.ollama.main] url: http://127.0.0.1:11434 time=2024-07-17T12:14:03.637Z level=INFO source=memory.go:309 msg="offload to cpu" layers.requested=-1 layers.model=33 layers.offload=0 layers.split="" memory.available="[9.3 GiB]" memory.required.full="5.5 GiB" memory.required.partial="0 B" memory.required.kv="1.0 GiB" memory.required.allocations="[5.5 GiB]" memory.weights.total="4.7 GiB" memory.weights.repeating="4.6 GiB" memory.weights.nonrepeating="105.0 MiB" memory.graph.full="560.0 MiB" memory.graph.partial="585.0 MiB" time=2024-07-17T12:14:03.638Z level=INFO source=server.go:383 msg="starting llama server" cmd="/tmp/ollama495631578/runners/cpu_avx2/ollama_llama_server --model /media/Nextcloud/openwebui_models/models/blobs/sha256-ff82381e2bea77d91c1b824c7afb83f6fb73e9f7de9dda631bcdbca564aa5435 --ctx-size 8192 --batch-size 512 --embedding --log-disable --no-mmap --parallel 4 --port 36195" time=2024-07-17T12:14:03.639Z level=INFO source=sched.go:437 msg="loaded runners" count=1 time=2024-07-17T12:14:03.639Z level=INFO source=server.go:571 msg="waiting for llama runner to start responding" time=2024-07-17T12:14:03.641Z level=INFO source=server.go:612 msg="waiting for server to become available" status="llm server error" INFO [main] build info | build=1 commit="a8db2a9" tid="140424338167680" timestamp=1721218443 INFO [main] system info | n_threads=8 n_threads_batch=-1 system_info="AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 0 | " tid="140424338167680" timestamp=1721218443 total_threads=8 INFO [main] HTTP server listening | hostname="127.0.0.1" n_threads_http="7" port="36195" tid="140424338167680" timestamp=1721218443 llama_model_loader: loaded meta data with 25 key-value pairs and 291 tensors from /media/Nextcloud/openwebui_models/models/blobs/sha256-ff82381e2bea77d91c1b824c7afb83f6fb73e9f7de9dda631bcdbca564aa5435 (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.name str = Mistral-7B-Instruct-v0.3 llama_model_loader: - kv 2: llama.block_count u32 = 32 llama_model_loader: - kv 3: llama.context_length u32 = 32768 llama_model_loader: - kv 4: llama.embedding_length u32 = 4096 llama_model_loader: - kv 5: llama.feed_forward_length u32 = 14336 llama_model_loader: - kv 6: llama.attention.head_count u32 = 32 llama_model_loader: - kv 7: llama.attention.head_count_kv u32 = 8 llama_model_loader: - kv 8: llama.rope.freq_base f32 = 1000000.000000 llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 10: general.file_type u32 = 2 llama_model_loader: - kv 11: llama.vocab_size u32 = 32768 llama_model_loader: - kv 12: llama.rope.dimension_count u32 = 128 llama_model_loader: - kv 13: tokenizer.ggml.model str = llama llama_model_loader: - kv 14: tokenizer.ggml.pre str = default llama_model_loader: - kv 15: tokenizer.ggml.tokens arr[str,32768] = ["<unk>", "<s>", "</s>", "[INST]", "[... llama_model_loader: - kv 16: tokenizer.ggml.scores arr[f32,32768] = [0.000000, 0.000000, 0.000000, 0.0000... llama_model_loader: - kv 17: tokenizer.ggml.token_type arr[i32,32768] = [2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ... llama_model_loader: - kv 18: tokenizer.ggml.bos_token_id u32 = 1 llama_model_loader: - kv 19: tokenizer.ggml.eos_token_id u32 = 2 llama_model_loader: - kv 20: tokenizer.ggml.unknown_token_id u32 = 0 llama_model_loader: - kv 21: tokenizer.ggml.add_bos_token bool = true llama_model_loader: - kv 22: tokenizer.ggml.add_eos_token bool = false llama_model_loader: - kv 23: tokenizer.chat_template str = {{ bos_token }}{% for message in mess... llama_model_loader: - kv 24: general.quantization_version u32 = 2 llama_model_loader: - type f32: 65 tensors llama_model_loader: - type q4_0: 225 tensors llama_model_loader: - type q6_K: 1 tensors llm_load_vocab: special tokens cache size = 1027 llm_load_vocab: token to piece cache size = 0.1731 MB llm_load_print_meta: format = GGUF V3 (latest) llm_load_print_meta: arch = llama llm_load_print_meta: vocab type = SPM llm_load_print_meta: n_vocab = 32768 llm_load_print_meta: n_merges = 0 llm_load_print_meta: vocab_only = 0 llm_load_print_meta: n_ctx_train = 32768 llm_load_print_meta: n_embd = 4096 llm_load_print_meta: n_layer = 32 llm_load_print_meta: n_head = 32 llm_load_print_meta: n_head_kv = 8 llm_load_print_meta: n_rot = 128 llm_load_print_meta: n_swa = 0 llm_load_print_meta: n_embd_head_k = 128 llm_load_print_meta: n_embd_head_v = 128 llm_load_print_meta: n_gqa = 4 llm_load_print_meta: n_embd_k_gqa = 1024 llm_load_print_meta: n_embd_v_gqa = 1024 llm_load_print_meta: f_norm_eps = 0.0e+00 llm_load_print_meta: f_norm_rms_eps = 1.0e-05 llm_load_print_meta: f_clamp_kqv = 0.0e+00 llm_load_print_meta: f_max_alibi_bias = 0.0e+00 llm_load_print_meta: f_logit_scale = 0.0e+00 llm_load_print_meta: n_ff = 14336 llm_load_print_meta: n_expert = 0 llm_load_print_meta: n_expert_used = 0 llm_load_print_meta: causal attn = 1 llm_load_print_meta: pooling type = 0 llm_load_print_meta: rope type = 0 llm_load_print_meta: rope scaling = linear llm_load_print_meta: freq_base_train = 1000000.0 llm_load_print_meta: freq_scale_train = 1 llm_load_print_meta: n_ctx_orig_yarn = 32768 llm_load_print_meta: rope_finetuned = unknown llm_load_print_meta: ssm_d_conv = 0 llm_load_print_meta: ssm_d_inner = 0 llm_load_print_meta: ssm_d_state = 0 llm_load_print_meta: ssm_dt_rank = 0 llm_load_print_meta: model type = 7B llm_load_print_meta: model ftype = Q4_0 llm_load_print_meta: model params = 7.25 B llm_load_print_meta: model size = 3.83 GiB (4.54 BPW) llm_load_print_meta: general.name = Mistral-7B-Instruct-v0.3 llm_load_print_meta: BOS token = 1 '<s>' llm_load_print_meta: EOS token = 2 '</s>' llm_load_print_meta: UNK token = 0 '<unk>' llm_load_print_meta: LF token = 781 '<0x0A>' llm_load_print_meta: max token length = 48 llm_load_tensors: ggml ctx size = 0.14 MiB llm_load_tensors: CPU buffer size = 3922.02 MiB time=2024-07-17T12:14:03.893Z level=INFO source=server.go:612 msg="waiting for server to become available" status="llm server loading model" time=2024-07-17T12:14:09.958Z level=INFO source=server.go:612 msg="waiting for server to become available" status="llm server error" INFO: 172.18.0.1:41808 - "GET /health HTTP/1.1" 200 OK time=2024-07-17T12:14:10.211Z level=ERROR source=sched.go:443 msg="error loading llama server" error="llama runner process has terminated: signal: killed " [GIN] 2024/07/17 - 12:14:10 | 500 | 6.599245043s | 127.0.0.1 | POST "/v1/chat/completions" INFO: 122.180.29.153:0 - "POST /ollama/v1/chat/completions HTTP/1.1" 500 Internal Server Error
-
-
-
@shrey said in Using Mistral API seems broken on cloudron:
@nebulon Thanks!
Indeed, that was it.RAM was set at 2GB. Whereas, it seems to require a min. of 5.5GB to function.
That's right, and if you can provide it with at least 8-16GB of RAM you will see a huge difference. These things are meant to consume large resources for now, but it's getting better.